Skip to contents

Analysis

Functions for describing and analyzing categorical and metric data. Report functions call table, plot, and effect functions.

report_counts()
Create table and plot for categorical variables
report_metrics()
Create table and plot for metric variables
tab_counts() experimental
Output a frequency table
tab_metrics() experimental
Output a table with distribution parameters
plot_counts() experimental
Output a frequency plot
plot_metrics() experimental
Output a plot with distribution parameters such as the mean values
effect_counts() experimental
Output effect sizes and test statistics for count data
effect_metrics() experimental
Output effect sizes and test statistics for metric data

Labeling

Manage and apply variable labels.

codebook() experimental
Get variable labels from their comment attributes
labs_apply() experimental
Set column and value labels
labs_clear() experimental
Remove all comments from the selected columns
labs_store() experimental
Get the current codebook and store it in the codebook attribute.
labs_restore() experimental
Restore labels from the codebook store in the codebook attribute.

Styling

Functions for customized visual styling and formatting.

theme_vlkr()
Define a default theme for volker plots
html_report()
Volker style HTML document format
pdf_report()
Volker style PDF document format

Data preparation

Functions for data preparation and calculation.

add_index() experimental
Calculate the mean value of multiple items
add_clusters() experimental
Add cluster number to a data frame
add_factors() experimental
Add PCA columns along with summary statistics (KMO and Bartlett test) to a data frame

Example data

chatgpt
ChatGPT Adoption Dataset CG-GE-APR23