The table type depends on the number of selected columns:
One metric column: see tab_metrics_one
Multiple metric columns: see tab_metrics_items
Group comparisons:
One metric column and one grouping column: see tab_metrics_one_grouped
Multiple metric columns and one grouping column: see tab_metrics_items_grouped
Multiple metric columns and multiple grouping columns: see tab_metrics_items_grouped_items (not yet implemented)
By default, if you provide two column selections, the second column is treated as categorical. Setting the metric-parameter to TRUE will call the appropriate functions for correlation analysis:
Two metric columns: see tab_metrics_one_cor
Multiple metric columns and one metric column: see tab_metrics_items_cor
Two metric column selections: see tab_metrics_items_cor_items
Parameters that may be passed to specific metric functions:
ci: Add confidence intervals for means or correlation coefficients.
values: The output metrics, mean (m), the standard deviation (sd) or both (the default).
digits: Tables containing means and standard deviations by default round values to one digit. Increase the number to show more digits
method: By default, correlations are calculated using Pearson’s R. You can choose Spearman’s Rho with the methods-parameter.
labels: Labels are extracted from the column attributes. Set to FALSE to output bare column names and values.
Arguments
- data
A data frame.
- cols
A tidy column selection, e.g. a single column (without quotes) or multiple columns selected by methods such as starts_with().
- cross
Optional, a grouping column (without quotes).
- metric
When crossing variables, the cross column parameter can contain categorical or metric values. By default, the cross column selection is treated as categorical data. Set metric to TRUE, to treat it as metric and calculate correlations.
- clean
Prepare data by data_clean.
- ...
Other parameters passed to the appropriate table function.