Output a correlation table for item battery and item battery
Source:R/tables.R
tab_metrics_items_cor_items.Rd
Usage
tab_metrics_items_cor_items(
data,
cols,
cross,
method = "pearson",
digits = 2,
ci = FALSE,
labels = TRUE,
clean = TRUE,
...
)
Arguments
- data
A tibble.
- cols
The source columns.
- cross
The target columns or NULL to calculate correlations within the source columns.
- method
The output metrics, pearson = Pearson's R, spearman = Spearman's rho.
- digits
The number of digits to print.
- ci
Whether to calculate 95% confidence intervals of the correlation coefficient.
- labels
If TRUE (default) extracts labels from the attributes, see codebook.
- clean
Prepare data by data_clean.
- ...
Placeholder to allow calling the method with unused parameters from tab_metrics.
Examples
library(volker)
data <- volker::chatgpt
tab_metrics_items_cor_items(
data,
starts_with("cg_adoption_adv"),
starts_with("use"),
metric = TRUE
)
#>
#>
#> |Expectations | Usage| Pearson's r|
#> |:-----------------------------------------------------------|-----------------------:|-----------:|
#> |ChatGPT has clear advantages compared to similar offerings. | in private context| 0.50|
#> |ChatGPT has clear advantages compared to similar offerings. | in professional context| 0.27|
#> |Using ChatGPT brings financial benefits. | in private context| 0.17|
#> |Using ChatGPT brings financial benefits. | in professional context| 0.53|
#> |Using ChatGPT is advantageous in many tasks. | in private context| 0.34|
#> |Using ChatGPT is advantageous in many tasks. | in professional context| 0.35|
#> |Compared to other systems, using ChatGPT is more fun. | in private context| 0.47|
#> |Compared to other systems, using ChatGPT is more fun. | in professional context| 0.27|
#>
#> 2 missing case(s) omitted.
#>