Skip to contents

The regression output comes from stats::lm.

[Experimental]

Usage

model_metrics_plot(
  data,
  col,
  categorical,
  metric,
  interactions = NULL,
  diagnostics = FALSE,
  labels = TRUE,
  clean = TRUE,
  ...
)

Arguments

data

A tibble.

col

The target column holding metric values.

categorical

A tidy column selection holding categorical variables.

metric

A tidy column selection holding metric variables.

interactions

A vector of interaction effects to calculate. Each interaction effect should be provided as multiplication of the variables. Example: c(sd_gender * adopter).

labels

If TRUE (default) extracts labels from the attributes, see codebook.

clean

Prepare data by data_clean.

...

Placeholder to allow calling the method with unused parameters from effect_metrics.

Value

A volker list object containing volker plots

Examples

library(volker)
data <- volker::chatgpt

data |>
  filter(sd_gender != "diverse") |>
  model_metrics_plot(use_work, categorical = c(sd_gender, adopter), metric = sd_age)