Output a regression table with estimates and macro statistics
Source:R/effects.R
effect_metrics_one_grouped.Rd
The regression output comes from stats::lm
.
T-test is performed using stats::t.test
.
Normality check is performed using
stats::shapiro.test
.
Equality of variances across groups is assessed using car::leveneTest
.
Cohen's d is calculated using effectsize::cohens_d
.
Usage
effect_metrics_one_grouped(
data,
col,
cross,
method = "lm",
labels = TRUE,
clean = TRUE,
...
)
Arguments
- data
A tibble.
- col
The column holding metric values.
- cross
The column holding groups to compare.
- method
A character vector of methods, e.g. c("t.test","lm"). Supported methods are t.test (only valid if the cross column contains two levels) and lm (regression results).
- labels
If TRUE (default) extracts labels from the attributes, see codebook.
- clean
Prepare data by data_clean.
- ...
Placeholder to allow calling the method with unused parameters from effect_metrics.
Examples
library(volker)
data <- volker::chatgpt
effect_metrics_one_grouped(data, sd_age, sd_gender)
#>
#>
#> |Term | estimate| ci low| ci high| standard error| t| p| stars|
#> |:------------------|--------:|------:|-------:|--------------:|-----:|-----:|-----:|
#> |(Intercept) | 37.52| 33.21| 41.84| 2.18| 17.24| 0.000| ***|
#> |female (Reference) | | | | | | | |
#> |male | 3.69| -1.88| 9.27| 2.81| 1.31| 0.192| |
#> |diverse | -4.53| -32.18| 23.13| 13.94| -0.32| 0.746| |
#>
#>
#> |Statistic | value|
#> |:-----------------------------|-----:|
#> |Adjusted R squared | 0|
#> |Degrees of freedom | 2|
#> |Residuals' degrees of freedom | 98|
#> |F | 0.98|
#> |p | 0.38|
#> |stars | |