Output correlation coefficients for items and one metric variable
Source:R/effects.R
effect_metrics_items_cor.Rd
The correlation is calculated using stats::cor.test
.
Usage
effect_metrics_items_cor(
data,
cols,
cross,
method = "pearson",
labels = TRUE,
clean = TRUE,
...
)
Arguments
- data
A tibble containing item measures.
- cols
Tidyselect item variables (e.g. starts_with...).
- cross
The column holding metric values to correlate.
- method
The output metrics, pearson = Pearson's R, spearman = Spearman's rho.
- labels
If TRUE (default) extracts labels from the attributes, see codebook.
- clean
Prepare data by data_clean.
- ...
Placeholder to allow calling the method with unused parameters from effect_metrics.
Examples
library(volker)
data <- volker::chatgpt
effect_metrics_items_cor(
data, starts_with("cg_adoption_adv"), sd_age
)
#>
#>
#> |Expectations: Correlation with Age | R squared| n| Pearson's r| ci low| ci high| df| t| p| stars|
#> |:-----------------------------------------------------------|---------:|--:|-----------:|------:|-------:|--:|-----:|-----:|-----:|
#> |ChatGPT has clear advantages compared to similar offerings. | 0.01| 99| -0.12| -0.31| 0.08| 97| -1.16| 0.249| |
#> |Using ChatGPT brings financial benefits. | 0.01| 99| -0.09| -0.29| 0.11| 97| -0.93| 0.356| |
#> |Using ChatGPT is advantageous in many tasks. | 0.00| 99| -0.06| -0.25| 0.14| 97| -0.56| 0.579| |
#> |Compared to other systems, using ChatGPT is more fun. | 0.01| 99| -0.12| -0.31| 0.08| 97| -1.18| 0.239| |
#>
#> 2 missing case(s) omitted.
#>