
Effect size and test for comparing multiple variables by a grouping variable
Source:R/effects.R
effect_counts_items_grouped.RdEffect size and test for comparing multiple variables by a grouping variable
Usage
effect_counts_items_grouped(
data,
cols,
cross,
method = "cramer",
adjust = "fdr",
labels = TRUE,
clean = TRUE,
...
)Arguments
- data
A tibble containing item measures and grouping variable.
- cols
Tidyselect item variables (e.g. starts_with...).
- cross
The column holding groups to compare.
- method
The output metrics, currently only
crameris supported.- adjust
Performing multiple significance tests inflates the alpha error. Thus, p values need to be adjusted according to the number of tests. Set a method supported by
stats::p.adjust, e.g. "fdr" (the default) or "bonferroni". Disable adjustment with FALSE.- labels
If TRUE (default) extracts labels from the attributes, see codebook.
- clean
Prepare data by data_clean.
- ...
Placeholder to allow calling the method with unused parameters from effect_counts.
Examples
library(volker)
data <- volker::chatgpt
effect_counts_items_grouped(
data, starts_with("cg_adoption_adv"), sd_gender
)
#>
#>
#> |Expectations: Correlation w... | Cramer's V| Chi-squared| n| df| p| stars|
#> |:----------------------------------------|----------:|-----------:|--:|--:|-----:|-----:|
#> |ChatGPT has clear advantages compared... | 0.14| 3.76| 99| | 0.851| |
#> |Using ChatGPT brings financial benefits. | 0.16| 4.99| 99| | 0.851| |
#> |Using ChatGPT is advantageous in many... | 0.14| 3.78| 99| | 0.851| |
#> |Compared to other systems, using Chat... | 0.13| 3.44| 99| | 0.851| |
#>
#> n=99. 2 missing case(s) omitted. Adjusted significance p values with fdr method.
#>