
Effect size and test for comparing multiple variables by a grouping variable
Source:R/effects.R
effect_counts_items_grouped.Rd
Effect size and test for comparing multiple variables by a grouping variable
Usage
effect_counts_items_grouped(
data,
cols,
cross,
method = "cramer",
labels = TRUE,
clean = TRUE,
...
)
Arguments
- data
A tibble containing item measures and grouping variable.
- cols
Tidyselect item variables (e.g. starts_with...).
- cross
The column holding groups to compare.
- method
The output metrics, currently only
cramer
is supported.- labels
If TRUE (default) extracts labels from the attributes, see codebook.
- clean
Prepare data by data_clean.
- ...
Placeholder to allow calling the method with unused parameters from effect_counts.
Examples
library(volker)
data <- volker::chatgpt
effect_counts_items_grouped(
data, starts_with("cg_adoption_adv"), sd_gender
)
#>
#>
#> |Expectations: Correlation with Gender | Cramer's V| Chi-squared| n| df| p| stars|
#> |:-----------------------------------------------------------|----------:|-----------:|--:|--:|-----:|-----:|
#> |ChatGPT has clear advantages compared to similar offerings. | 0.14| 3.76| 99| | 0.829| |
#> |Using ChatGPT brings financial benefits. | 0.16| 4.99| 99| | 0.813| |
#> |Using ChatGPT is advantageous in many tasks. | 0.14| 3.78| 99| | 0.830| |
#> |Compared to other systems, using ChatGPT is more fun. | 0.13| 3.44| 99| | 0.865| |
#>
#> 2 missing case(s) omitted.
#>