Skip to contents

Effect size and test for comparing multiple variables by a grouping variable

Usage

effect_counts_items_grouped(
  data,
  cols,
  cross,
  method = "cramer",
  labels = TRUE,
  clean = TRUE,
  ...
)

Arguments

data

A tibble containing item measures and grouping variable.

cols

Tidyselect item variables (e.g. starts_with...).

cross

The column holding groups to compare.

method

The output metrics, currently only cramer is supported.

labels

If TRUE (default) extracts labels from the attributes, see codebook.

clean

Prepare data by data_clean.

...

Placeholder to allow calling the method with unused parameters from effect_counts.

Value

A volker tibble.

Examples

library(volker)
data <- volker::chatgpt

effect_counts_items_grouped(
  data, starts_with("cg_adoption_adv"),  sd_gender
)
#> 
#> 
#> |Expectations: Correlation with Gender                       | Cramer's V| Chi-squared|  n| df|     p| stars|
#> |:-----------------------------------------------------------|----------:|-----------:|--:|--:|-----:|-----:|
#> |ChatGPT has clear advantages compared to similar offerings. |       0.14|        3.76| 99|   | 0.829|      |
#> |Using ChatGPT brings financial benefits.                    |       0.16|        4.99| 99|   | 0.813|      |
#> |Using ChatGPT is advantageous in many tasks.                |       0.14|        3.78| 99|   | 0.830|      |
#> |Compared to other systems, using ChatGPT is more fun.       |       0.13|        3.44| 99|   | 0.865|      |
#> 
#> 2 missing case(s) omitted.
#>