Performs a goodness-of-fit test and calculates the Gini coefficient for each item.
The goodness-of-fit-test is calculated using  stats::chisq.test.
Arguments
- data
- A tibble containing item measures. 
- cols
- Tidyselect item variables (e.g. starts_with...). 
- adjust
- Performing multiple significance tests inflates the alpha error. Thus, p values need to be adjusted according to the number of tests. Set a method supported by - stats::p.adjust, e.g. "fdr" (the default) or "bonferroni". Disable adjustment with FALSE.
- labels
- If TRUE (default) extracts labels from the attributes, see codebook. 
- clean
- Prepare data by data_clean. 
- ...
- Placeholder to allow calling the method with unused parameters from effect_counts. 
Value
A volker tibble with the following statistical measures:
- Gini coefficient: Gini coefficient, measuring inequality. 
- n: Number of cases the calculation is based on. 
- Chi-squared: Chi-Squared test statistic. 
- p: p-value for the statistical test. 
- stars: Significance stars based on p-value (*, **, ***). 
Examples
library(volker)
data <- volker::chatgpt
effect_counts_items(data, starts_with("cg_adoption_adv"))
#> 
#> 
#> |Expectations                             | Gini coefficient|  n| Chi-squared|     p| stars|
#> |:----------------------------------------|----------------:|--:|-----------:|-----:|-----:|
#> |ChatGPT has clear advantages compared... |             0.36| 99|       43.47| 0.000|   ***|
#> |Using ChatGPT brings financial benefits. |             0.19| 99|       14.28| 0.006|    **|
#> |Using ChatGPT is advantageous in many... |             0.36| 99|       47.01| 0.000|   ***|
#> |Compared to other systems, using Chat... |             0.40| 99|       53.68| 0.000|   ***|
#> 
#> 2 missing case(s) omitted. Adjusted significance p values with fdr method.
#> 
