Skip to contents

Performs a goodness-of-fit test and calculates the Gini coefficient for each item. The goodness-of-fit-test is calculated using stats::chisq.test.

Usage

effect_counts_items(data, cols, labels = TRUE, clean = TRUE, ...)

Arguments

data

A tibble containing item measures.

cols

Tidyselect item variables (e.g. starts_with...).

labels

If TRUE (default) extracts labels from the attributes, see codebook.

clean

Prepare data by data_clean.

...

Placeholder to allow calling the method with unused parameters from effect_counts.

Value

A volker tibble with the following statistical measures:

  • Gini coefficient: Gini coefficient, measuring inequality.

  • n: Number of cases the calculation is based on.

  • Chi-squared: Chi-Squared test statistic.

  • p: p-value for the statistical test.

  • stars: Significance stars based on p-value (*, **, ***).

Examples

library(volker)
data <- volker::chatgpt

effect_counts_items(data, starts_with("cg_adoption_adv"))
#> 
#> 
#> |Expectations                                                | Gini coefficient|  n| Chi-squared|     p| stars|
#> |:-----------------------------------------------------------|----------------:|--:|-----------:|-----:|-----:|
#> |ChatGPT has clear advantages compared to similar offerings. |             0.36| 99|       43.47| 0.000|   ***|
#> |Using ChatGPT brings financial benefits.                    |             0.19| 99|       14.28| 0.006|    **|
#> |Using ChatGPT is advantageous in many tasks.                |             0.36| 99|       47.01| 0.000|   ***|
#> |Compared to other systems, using ChatGPT is more fun.       |             0.40| 99|       53.68| 0.000|   ***|
#> 
#> 2 missing case(s) omitted.
#>