Skip to contents

Performs a goodness-of-fit test and calculates the Gini coefficient for each item. The goodness-of-fit-test is calculated using stats::chisq.test.

Usage

effect_counts_items(data, cols, labels = TRUE, clean = TRUE, ...)

Arguments

data

A tibble containing item measures.

cols

Tidyselect item variables (e.g. starts_with...).

labels

If TRUE (default) extracts labels from the attributes, see codebook.

clean

Prepare data by data_clean.

...

Placeholder to allow calling the method with unused parameters from effect_counts.

Value

A volker tibble.

Examples

library(volker)
data <- volker::chatgpt

effect_counts_items(data, starts_with("cg_adoption_adv"))
#> 
#> 
#> |Expectations                                                | Gini| Number of cases| Chi-squared| p value| stars|
#> |:-----------------------------------------------------------|----:|---------------:|-----------:|-------:|-----:|
#> |ChatGPT has clear advantages compared to similar offerings. | 0.36|              99|        43.5|       0|   ***|
#> |Using ChatGPT brings financial benefits.                    | 0.19|              99|        14.3|       0|    **|
#> |Using ChatGPT is advantageous in many tasks.                | 0.36|              99|        47.0|       0|   ***|
#> |Compared to other systems, using ChatGPT is more fun.       | 0.40|              99|        53.7|       0|   ***|
#> 
#> 2 missing case(s) omitted.
#>